
Android Development: Part One

This workshop will introduce you to the nature of the Android development platform. We begin with

an overview of the platform’s development history and some discussion of its associated hardware

architecture. We go on to address the unique peculiarities of the Android Platform’s software

architecture, the nature of the Dalvik ‘process virtual machine’ on which Android applications run,

and two variants of the Android Software Development Kit. The Android Native Development Kit is

introduced and contrasted with the SDK.

We go on to set up an Android Development Project using the standard SDK and present some

sample Android programs designed to get you thinking about how to get started with the Android

Platform. The workshop concludes with some discussion of what will be covered in Part Two of this

mini-series of workshops, and some references and recommended reading for those who wish to

explore this area in greater details in their own time.

Android: “It’s Linux, Jim, but not as we know it…”
Android, a Linux-based operating system for low-power touchscreen devices, began development in

2003 and was nominally released in 2007, with the first handsets coming out late in 2008. Essentially

a smartphone and tablet OS, Android supports ARM, MIPS and x86 hardware platforms – of those,

ARM is generally viewed as the most commonly targeted. To give some context to how the OS and

its associated hardware have evolved in the four years since its release, the images below show the

first Android smartphone and one of the most recent Android offerings from the same company,

HTC.

HTC Dream (2008) HTC DLXJ (2012)
528 MHz CPU 1.5 GHz Quad-Core CPU

256 MB Storage 16 GB Storage
192 MB RAM 2 GB RAM

3.2” HVGA Screen 5.0” 1080p HD Screen

The explosion of hardware development in the mobile platform market has dwarfed the incremental

performance increases of desktop hardware across the same period. Commensurate with this, the

capabilities of operating systems targeted at such hardware have been extended and expanded, as

has their profile. As an example, Microsoft’s latest iteration of the Windows operating system was

designed with touch screen interfaces as a key aspect of future technology, and kernels were

released for both the x86 and ARM architectures.

All of this combines to make the understanding of mobile platform development a useful quality for

any aspiring game developer. As such, you should consider this tutorial an encouragement to

explore all mobile platforms on your own time, to develop for yourself a small portfolio of mobile

software. Not only is it directly relevant to the releases of many smaller studios, but it demonstrates

that you have experience working within tight computational constraints which, in turn, suggests

you know how to write efficient and elegant game code.

So, without further ado, let’s dive into what development on Android actually means.

The Android SDK, or How I Learned to Stop Caring and Love the Dalvik

Machine
The first thing that we need to understand about Android is that it is an operating system in two

parts. Actually, that’s an oversimplification – depending on how you slice it, it can be an operating

system of a half dozen parts – but for our purposes we only consider two aspects. The background,

pared-down Linux kernel (with no X Window System support), and the Dalvik (Java) Virtual Machine.

Almost all development for Android is undertaken via the Dalvik VM. The VM executes Dalvik ‘dex-

code’ (Dalvik Executable), normally translated from Java bytecode. We say normally because, within

the Android SDK, there is the option to inject libraries into one’s Java-based Android program,

through clever use of the Java Native Interface, to facilitate support of other programming languages

such as C. This process has been used to port old-school PC titles to the Android platform, but it is

never as straightforward as simply ‘import library, ctrl-c, ctrl-v, compile’. Well, never say never – a

simple, ASCII tic-tac-toe simulator would probably find that development cycle reasonable.

For the most part, however, Android applications are run within the Dalvik machine, making calls to

the native level (for purposes such as OpenGL ES rendering) via a set of pre-existing libraries (some

of which will be presented later in this tutorial). This can lead to some interesting memory

management issues, given that the Dalvik machine has its own garbage collection and memory

allocation schema – but these, also, will be discussed later in the tutorial.

From the perspective of getting started with Android development, I recommend one (or,

preferably, both) of two development environments. For people comfortable with Visual Studio,

NVidia has a plug-in for Tegra development (Tegra being NVidia’s mobile chipset technology) that

supports Android development in the MS VS environment. This is useful, in that it allows you to

develop in an environment you’re already comfortable with. The down side of this plug-in is that it

does not allow for emulation of Android hardware on your PC. So, while you can test your code for

compilation within the Visual Studio environment, if you want to actually see what your code does

you have to plug in an Android device.

If you want to get this plug-in, you are required to register for NVidia’s Registered Developer

Program. This process normally takes a few hours (up to a day) and, depending on which ‘areas’ of

NVidia development you express interest in during registration, can aid you in more than just

Android development (for example, it is also required to obtain the NVidia CUDA development plug-

ins for Visual Studio). The actual installer is relatively small, but that’s because it downloads the bulk

of the material you need after you start installing. Once it’s installed, you will find an option in

Create New Project that allows you to select Android. Within that, you’ll find basic templates and

some simple sample programs to get yourself started. You’ll also find a base project for Android with

Native Library – more on this later.

The other, more common, platform for Android development comes from

http://developer.android.com/SDK. On this site you will find a complete ‘bundle’ that includes an

Android-centric Eclipse install, and all of the libraries you should need for getting started writing for

Android. Unlike the NVidia SDK, this download doesn’t require a ‘vetted’ registration procedure, and

you can be writing your first Android app within ten minutes of clicking the download link.

The Eclipse-based Android SDK does support development of Android Apps using C/C++, in the same

fashion that the Tegra toolkit does. For more information on how to set this up, given it can be a

little fiddly, an excellent tutorial can be found at

http://mhandroid.wordpress.com/2011/01/23/using-eclipse-for-android-cc-development/

If you have any problems installing either (or both!) of these environments, the first lab session of

the day (11am-12noon) has been allocated to helping you get up and running.

The Native Development Kit and You
There are two commonly employed ways to use C/C++ code in an Android application. The first,

mentioned above, is to include libraries that access the JNI and give you simple C/C++ support. The

second is to use what is called the Android Native Development Kit (or NDK). You can obtain the NDK

from android.com, but it should be approached with caution.

It is easy to envision the NDK as a sort of panacea – the idea being that you can simply copy and

paste a program you have developed in C++, wholesale, compile and run. This is rarely, if ever, the

case. Partially, this is because Android uses a pared-down, non-standard C library (known as Bionic,

for those who’re interested) – this can require you to ‘walk three sides of a square’ when

restructuring your existing codebase to suit it. On the other hand, if you have developed your entire

codebase with the Android NDK in mind, making the change in the other direction (from Android to

PC) is a simpler prospect.

We will discuss the NDK in Part Two of this tutorial series, along with other subjects directly relevant

to the Team Project (such as particle effects in OpenGL ES). For now, though, it is recommended that

you consider carefully which path you wish to follow in the context of how you make your game

‘portable’ between the PC and Android platforms.

Possibly the simplest way is to write two versions of each function and class you create – one in

standard C++, and another in Java. While this does front-load additional work for your team, it

reduces the chance that you will forge ahead with C++ development in the hope of ‘wedging it into

the NDK’ towards the end of your development cycle, only to find that this is impractical/impossible.

“Hello, World!” and Other Animals
Below is a link to a very useful tutorial that leads you, step by step, through the creation of a “Hello,

World!” example using the Eclipse-based Android SDK.

http://developer.android.com/training/basics/firstapp/index.html

Your first task this morning is to work through that example methodically. If you’ve already done

that on your own time, then either move on to the next task (discussed below) or, if you have the

NVidia Tegra SDK, compare its “Hello, World!” example to this one. Look at the differences,

investigate what the NVidia version does within its “HelloJni.c” file.

The next sample program for you to work through is a simple OpenGL ES program designed to make

you think about the differences (and similarities) between using OpenGL within the Android

environment, and using it in your existing PC-based software projects. The book this sample code is

drawn from has been very useful to me in exploring the capabilities of OpenGL ES, and is included in

the references for those who are interested in reading it for themselves.

References
OpenGL ES for Android: A Quick-Start Guide, by Kevin Brothaler

This is a ‘Beta-book’, in that it hasn’t yet been officially published. It covers much of the material you

have already explored as part of your Graphics module last semester, but does so from the

perspective of developing for Android within the SDK. The simple OpenGL ES sample program below

is drawn from it.

Pro OpenGL ES for Android (Professional Apress), by Mike Smithwick & Mayank Verma

A very interesting book that introduces OpenGL ES to the reader, discusses the matrix mathematics

behind rendering, and includes some interesting examples from which to draw inspiration.

The Android Website

Silly as it sounds, some of the tutorials on this site are very, very useful in terms of getting to grips

with Android development as a whole. Working through the tutorials is a good way to get your feet

wet with Android development without investing a lot of your free time/money.

FirstOpenGLProjectActivity.java

FirstOpenGLProjectRenderer.java

